Pilgrim Primary Maths Calculation Policy 2024-25

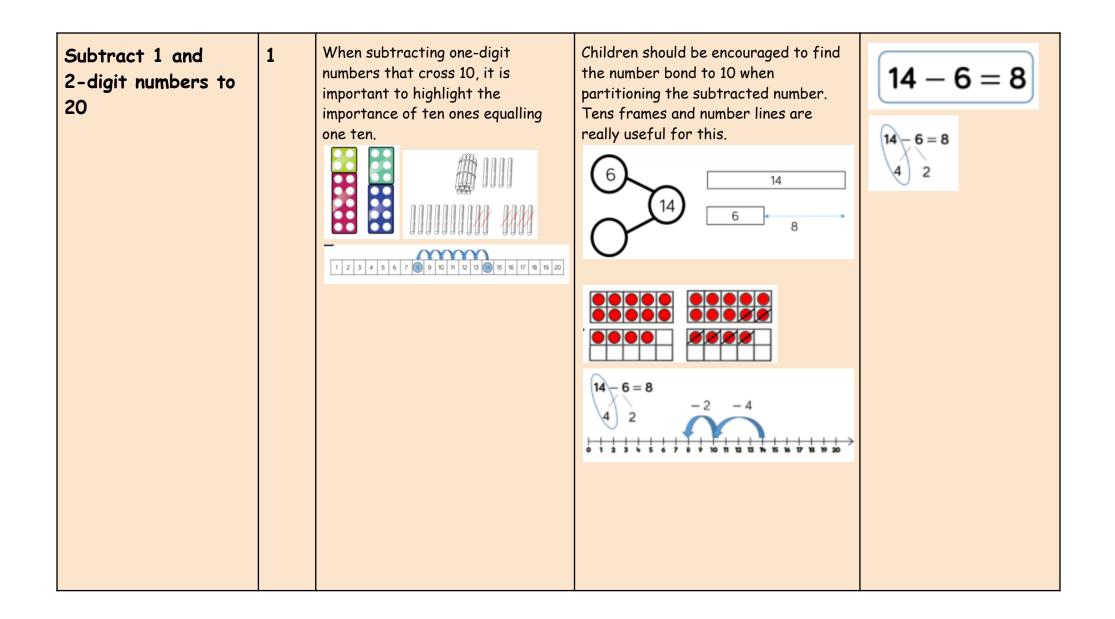
This calculation policy is a working document, created by Rachel Hardington for Pilgrim Primary Academy. This policy has been adapted in line with the guidance from the White Rose Hub calculation policy. It is highly recommended that

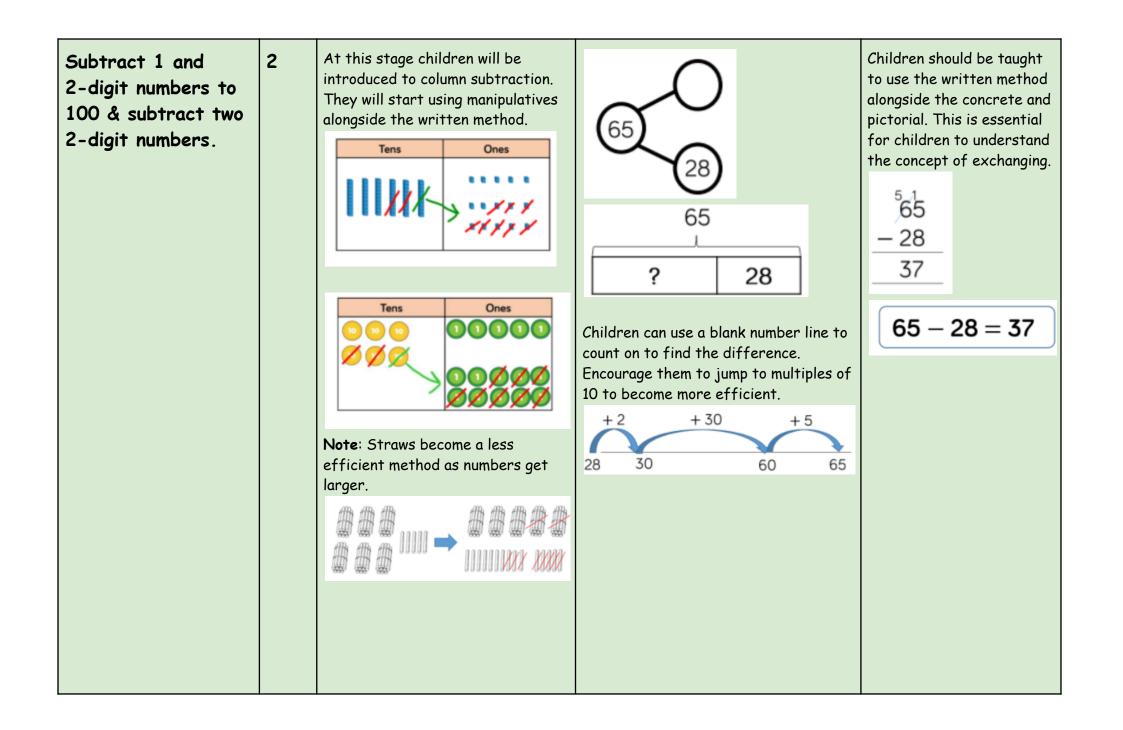
teachers look at the WRH calculation policies separately as they have additional guidance and information specifically about the purpose and use of each type of concrete apparatus. The year group allocated is the year that the skill is first introduced, teachers should always refer to and plan opportunities to recap skills taught in prior year groups.

Skills for addition	Year group	Concrete	Pictorial	Abstract
Add two 1-digit numbers to 10	1	Children explore addition using cubes, place value counters, numicon and bead strings.	Additions are represented using part-whole models, place value grids and number lines.	Use the pictorial representations to move into abstract. Children will need to be introduced to the + symbol. e.g. 7 4 4 4 4 4 4 4 4 4 4

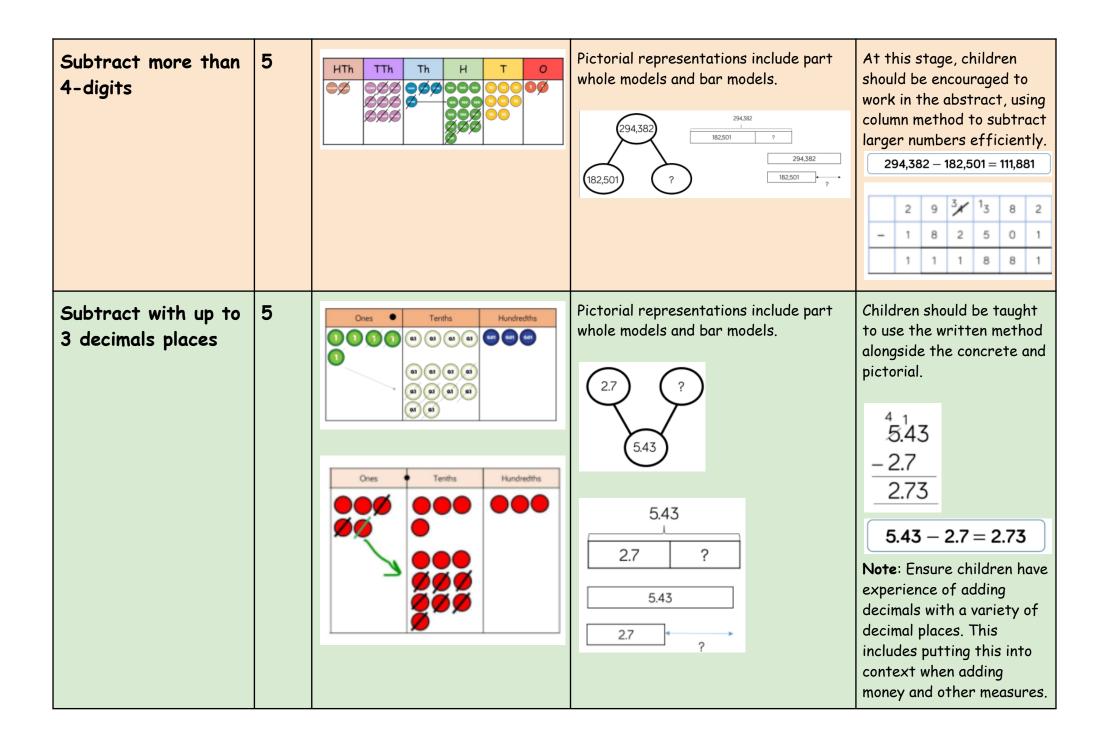
Add 1 and 2 digit numbers to 20		d strings and part-whole models, place value gride tant to and number lines. t of grouping w with the	symbol. 8 + 7 = 15 Mental strategy: Place the larger number in your head and count on the smaller number to find your answer. As children become more confident, they should be able to partition mentally. $8 + 2 =$ 10, 10 + 5 = 15
------------------------------------	--	--	---

Add three 1 digit numbers	2	Manipulatives that highlight number bonds to 10 are effective when adding three 1-digit numbers. These include numicon and place value counters / grids.	The following images represent part whole models in different ways. 7+6+3=16	It is important to introduce the concept and vocabulary of 'commutativity' - that the order of the numbers can be changed but the answer is still the same. Children record the addition using the + symbol. 7+6+3=16Mental strategy: Look for pairs to 10 first.
Add 1 and 2 digit numbers to 100	2	Number lines can be used to count on.	Children can represent the additions on a blank number line - making links with their number bonds to 10. $\begin{array}{r} + 2 + 3 \\ \hline 38 & 40 & 43 \\ \end{array}$ Other representations include part whole models and bar models.	Children record the addition using the + symbol. 38 + 5 = 43 Mental strategy: If I am at 38, how many do I need to add to get to 40? How many do I add on now? (How many are left?)

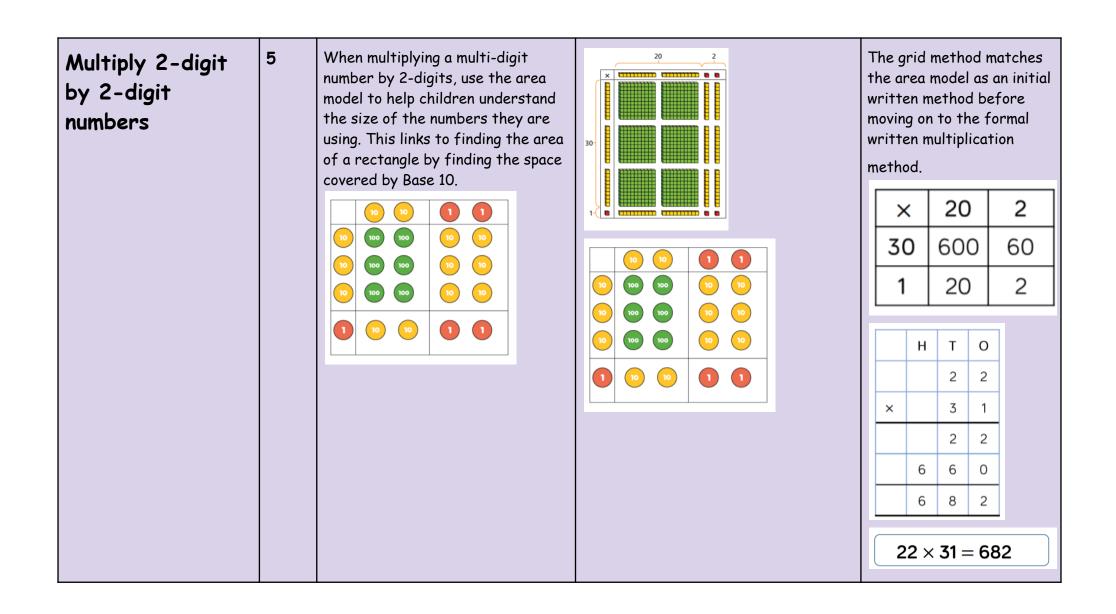

Add two 2 digit numbers (including an exchange)	2	At this stage children will be introduced to column addition. They will start using manipulatives alongside the written method. It is essential that children understand why we have to exchange and how this affects each column.	Children can draw a pictorial representation of the columns and place value counters to further support their learning and understanding. Other representations include number lines, part whole models and bar models.	Children should be taught to use the written method alongside the concrete and pictorial. This is essential for children to understand the concept of exchanging.			
			$ \begin{array}{c} 38 \\ 7 \\ 1 \\ 38 \\ 40 \\ 61 \\ \end{array} $	38 + 23 = 61 38 $+ 23$ 61 1			
		Note: Straws become a less efficient method as numbers get larger.	38 23				


Add with up to 3 digit numbers (including an exchange)	3	Base 10 and place value counters are the most effective manipulatives when adding numbers up to 3 digits. Note : Plain counters on a place value grid can also be used. It is essential that the written	Pictorial representations include part whole models and bar models. Children can be supported by images of the dienes and counters in the different models.	Children should be taught to use the written method alongside the concrete and pictorial. This is essential for children to understand the concept of exchanging. 265
		method is used alongside the concrete.	? <u>265</u> 164 265 265 ? 164	$ \begin{array}{r} 203 \\ + 164 \\ 429 \\ 1 \\ \end{array} $ 265 + 164 = 429
		Hundreds Tens Ones Image: Construction of the second s		

Add with up to 4 digits (including more than 1 exchange) 4 Base 10 and place value counters are the most effective manipulatives when adding numbers up to 4 digits. Note: Plain counters on a place value grid can also be used. Image: The transmitter of the tran	Pictorial representations include part whole models and bar models. Children can be supported by images of the dienes and counters in the different models.	Children should be taught to use the written method alongside the concrete and pictorial. This is essential for children to understand the concept of exchanging. 1 3 7 8 + 2 1 4 8 3 5 2 6 1 1 1,378 + 2,148 = 3,526
---	---	---


Add with more than 4 digits	5	Place value counters or plain counters on a place value grid are the most effective concrete resources when adding more than 4 digits.	Pictorial representations include part whole models and bar models.	Children should be taught to use the written method alongside the concrete and pictorial. This is essential for children to understand the concept of exchanging. 1 0 4 3 2 8 + 6 1 7 3 1 1 6 6 0 5 9 1 104,328 + 61,731 = 166,059
Add with up to 3 decimal places	5	The use of place value counters and plain counters are the most efficient method when adding decimals with 1,2 or 3 decimal places.	Pictorial representations include part whole models and bar models. $\underbrace{2.41}_{?}\underbrace{3.65}_{?}\underbrace{3.65}_{2.41}$ $\underbrace{3.65}_{2.41}$ $\underbrace{3.65}_{2.41}$	Children should be taught to use the written method alongside the concrete and pictorial. 3.65 + 2.41 6.06 1 $3.65 + 2.41 = 6.06Note: Ensure children haveexperience of addingdecimals with a variety ofdecimal places. Thisincludes putting this intocontext when addingmoney and other measures.$

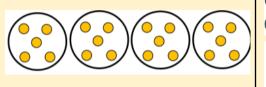
Skills for subtraction	Year group	Concrete	Pictorial	Abstract
Subtract two 1-digit numbers to 10	1	Children explore subtraction using cubes, place value counters, numicon, bead strings and number lines. First Then Now 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10	Tens frames, part-whole models and bar models support partitioning.	Use the pictorial representations to move into abstract. Children will need to be introduced to the - symbol. 7-3=4



Subtract up to 3-digits	3	Base 10 and place value counters are the most effective manipulatives when subtracting up to 3-digits. Hundreds Tens Ones Y//	Pictorial representations include part whole models and bar models.	Children should be taught to use the written method alongside the concrete and pictorial. $\frac{3435}{-273}$ 262 435 - 273 = 262
Subtract up to 4-digits	4	Base 10 and place value counters are the most effective manipulatives when subtracting up to 4-digits. Thousands Hundreds Tens Ones Thousands Hundreds Ten	Pictorial representations include part whole models and bar models.	Children should be taught to use the written method alongside the concrete and pictorial. $\begin{array}{r}3 & 1\\4357\\-2735\\1622\end{array}$ 4,357 - 2,735 = 1,622

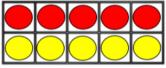
Skills for multiplication	Year group	Concrete	Pictorial	Abstract			
Solve one-step problems with multiplication	1/2	Numicon, bead strings and number lines should be used to introduce repeated addition. In Y1 children use concrete and pictorial methods to introduce multiplication.	Arrays:	One bag holds 5 apples. How many apples do 4 bags hold? In Year 2 children are introduced to the x symbol. 5 x 4 = 20.			
Multiply 2-digit by 1-digit numbers	3/4	Children use counters to represent each part of the multiplication.		Short multiplication H T 0 3 4 \times 5 1 7 0 1 2 $34 \times 5 = 170$			

Multiply 3-digit by 1-digit numbers	4	Base 10 and place value counters continue to support the understanding of the written method. Limit the number of exchanges needed in the questions and move children away from resources when multiplying larger numbers.	Hundreds Tens Ones Image: See 1 Image: See 1	2		2 9 1	т 4 2 = 9	0 5 4 0
Multiply 4-digit by 1-digit numbers	5	By this stage, place value counters are the best manipulative to support children in their understanding of the written method.	Note: If children are multiplying larger numbers and are struggling with their times tables, encourage the use of multiplication grids so children can focus on the use of the written method.	1 ,	326 × Th 1 5 2	з 3 = Н 8 4	= 5,4 T 2 7 1	78 0 6 3 8

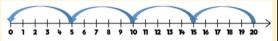

Multiply 2-digit by 3-digit numbers	5	Children can continue to use the area model when multiplying 3-digits by 2-digits. Place value counters would become more efficient to use but Base 10 can be used to highlight the size of		000 100 1				Encourage children to move towards the formal written method, seeing the links with the grid method. × 200 30 4					
		numbers.			50 2	6,000 400	900 60	120					
				100 100				2	400		0		
		10 1000 1000 1000 1000 100<					1	٢h	н	т	0		
									2	3	4		
							;	×		3	2		
									4	6	8		
							1	7	10	2	0		
							Ē	7	4	8	8		
							2	34	× 32	= 7,4	488		

Multiply 2-digit but 4-digit numbers	5/6	By this stage children should be confident in the written method and not require concrete apparatus.	TTh	Th 2	H 7	T 3	0 9
			×			2	8
			2	1 5	9 3	1	2
			5 1	4	7	8	0
			7	6	6	9	2
			2,73	39 ×	28 =	= 76,	692

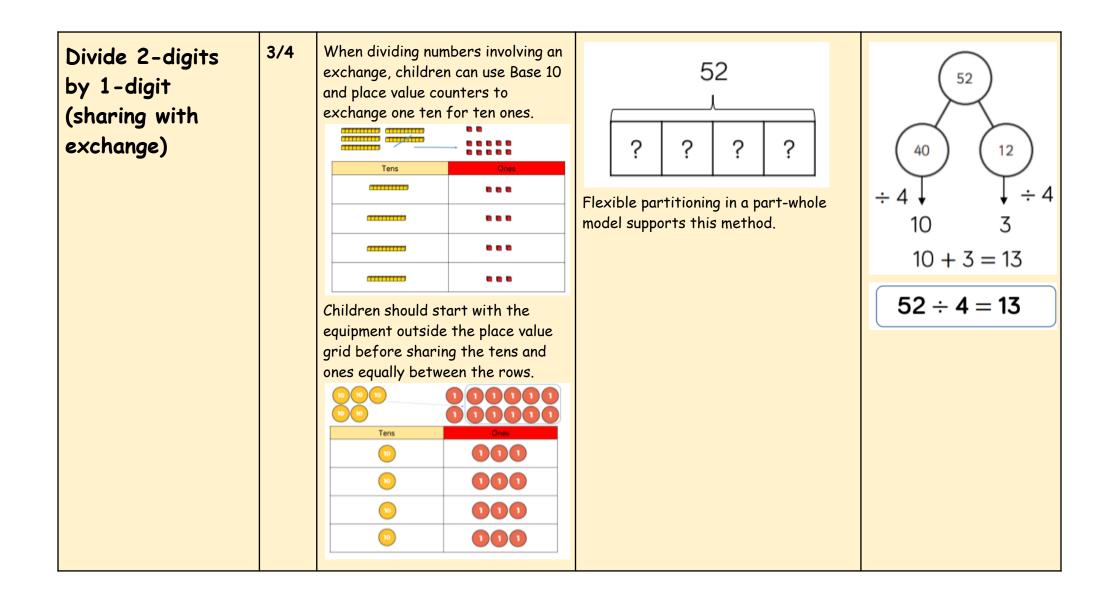
Skills for division	Year group	Concrete	Pictorial	Abstract
Solve one-step problems with division (sharing)	1/2	Children solve problems by sharing amounts into equal groups. In Year 1, children use concrete and pictorial representations to solve problems. They are not expected to record divisions formally.		In Year 2 children are introduced to the divide symbol. 20 ÷ 5 = 4

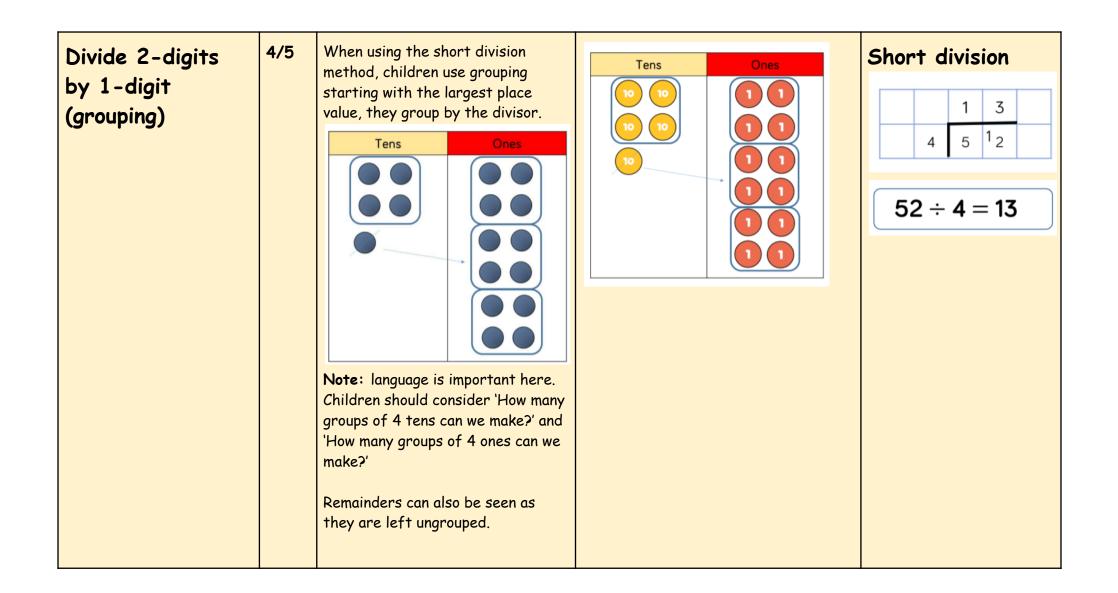

Solve one-step problems with division (grouping)

1/2



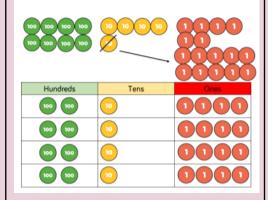
They can use concrete representations in fixed groups such as number shapes which helps to show the link between multiplication and division.

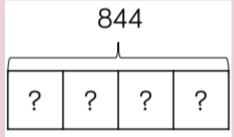

Grouping encourages children to count in multiples and links to repeated subtraction on a number line.


There are 20 apples altogether. They are put in bags of 5. How many bags are there?

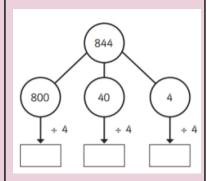
 $20 \div 5 = 4$

Divide 2-digits by 1-digit (no exchange sharing)	1/2	When dividing larger numbers, children can use manipulatives that allow them to partition into tens and ones. Straws, Base 10 and place value counters can all be used to share numbers in equal group.	Children use bar models to support understanding.	Part whole model can give children a clear written method that matches the concrete representation. $40 \qquad 8 \\ \hline + 2 \qquad + 2 \\ \hline + 2 \\ \hline + 2 \qquad + 2 \\ \hline + 2 \\$
		Tens Ones 10 10 1 1 10 10 1 1 1 10 10 1 1 1 1		


Divide 2-digits 3/4 When dividing numbers with remainders, children can use Base 10 and place value counters to exchange one ten for ten ones. Starting with the equipment outside the place value grid will highlight remainders, as they will be left outside the grid once the equal groups have been made. Image: The second	53 13 13 13 13 1 Flexible partitioning in a part-whole model supports this method.	53 + 4 + 12 + 1 + 4 + 12 + 1 + 4 + 12 + 1 + 4 + 12 + 1 + 4 + 12 + 1 + 1 + 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1
---	---	---


Divide 3-digits by 1-digit (sharing with exchange)

4


Children can continue to use place value counters to share 3-digit numbers into equal groups. Children should start with the equipment outside the place value grid before sharing the hundreds, tens and ones, equally between the rows. This method can also help to highlight remainders.

Flexible partitioning in a part-whole model supports this method.

Divide 3-digits by 1-digit (grouping)	4/5C	Children can continue to use grouping to support their understanding of short division when dividing by a 3-digit numbers by a 1-digit number.	Children can draw their own counters and group them through a more pictorial method.	4	2 8	1 5	4 1 ₆
		Place value counters or plain counters can be used on a place value grid to support this understanding.					
		Hundreds Tens Ones 100 100 10					
		Hundreds Tens Ones					

Divide 4-digits by 1-digit (grouping)	5	Place value counters or plain counters can be used on a place value grid to support children to divide 4-digits by 1-digit.	Note: Children should be encouraged to move away from the concrete and pictorial when dividing numbers with multiple exchanges.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Divide multi-digits by 2-digits (short division)	6	When children begin to divide up to 4-digit numbers by 2-digits, written methods become the most accurate as concrete and pictorial representations become less effective.	Children can write out multiples to support their calculations with larger remainders. 15 30 45 60 75 90 105 120 135 150	Children will also solve problems with remainders where the quotient can be rounded as appropriate. $\boxed{\begin{array}{c c} 0 & 4 & 8 & 9 \\ \hline 15 & 7 & 7_3 & 13_3 & 13_5 \end{array}}$ 7,335 ÷ 15 = 489

Divide multi-digits by 2-digits (long division)	6	By this stage children should be confident in the written method and not require concrete apparatus.	Children can also divide by 2-digit numbers using long division. Children can write out multiples to support their calculations with larger remainders. Children will also solve problems with remainders where the quotient can be rounded as appropriate. $\boxed{\begin{array}{c} 0 & 4 & 8 & 9\\ 15 & 7 & 3 & 3 & 5\\ - & 6 & 0 & 0\\ 11 & 3 & 5 & 5\\ - & 1 & 2 & 0 & 0\\ \hline 1 & 1 & 3 & 5\\ - & 1 & 3 & 5\\ \hline - & 1 & 3 & 5\\ \hline \end{array}} \begin{array}{c} 1 \times 15 = 15\\ 2 \times 15 = 30\\ 3 \times 15 = 45\\ 4 \times 15 = 60\\ 5 \times 15 = 75\\ - & 1 & 3 & 5\\ \hline \end{array}} \begin{array}{c} 1 \times 15 = 15\\ 2 \times 15 = 30\\ 3 \times 15 = 45\\ 4 \times 15 = 60\\ 5 \times 15 = 75\\ - & 1 & 3 & 5\\ \hline \end{array}}$
			7,335 ÷ 15 = 489